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Abstract

Quantifying and comparing performance of optimization algorithms
is one important aspect of research in search and optimization. How-
ever, this task turns out to be tedious and difficult to realize even in the
single-objective case – at least if one is willing to accomplish it in a scien-
tifically decent and rigorous way. The BBOB 2009 workshop will furnish
most of this tedious task for its participants: (1) choice and implemen-
tation of a well-motivated single-objective benchmark function testbed,
(2) design of an experimental set-up, (3) generation of data output for
(4) post-processing and presentation of the results in graphs and tables.
What remains to be done for the participants is to allocate CPU-time,
run their favorite black-box real-parameter optimizer in a few dimensions
a few hundreds of times and execute the provided post-processing script
afterwards. Two testbeds are provided,

• noise-free functions

• noisy functions

The participants can freely choose any or all of them.
During the workshop the overall procedure will be critically reviewed,

the algorithms will be presented by the participants, quantitative perfor-
mance measurements of all submitted algorithms will be presented, cate-
gorized by early and late performance and function properties like multi-
modality, ill-conditioning, symmetry, ridge-solving, coarse- and fine-grain
ruggedness, weak global structure, outlier noise...

This document, the benchmark function definitions and source code
of the benchmark functions and for the post-processing are available at
http://coco.gforge.inria.fr/doku.php?id=bbob-2009.
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1 Introduction

This document presents the experimental setup and the data presentation for
BBOB. The definition of the benchmark functions [5, 6] and the technical docu-
mentation for the provided software is given elsewhere.

1.1 Symbols, Constants, and Parameters

∆f precision to reach, that is, a difference to the optimal function value fopt.

fopt optimal function value is defined for each benchmark function individually

ftarget target function value to reach. The final, smallest considered target
function value is ftarget = fopt + 10−8, but also larger values for ftarget are
evaluated.
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Ntrials = 15 is the number of trials for each single setup, i.e. each function
and dimensionality. In each setup three trials are conducted on the same
function instance, respectively, using the first five function instances. Per-
formance is evaluated over all Ntrials trials.

D = 2; 3; 5; 10; 20; 40 search space dimensionalities used for all functions. Di-
mensionality 40 is optional and can be omitted.

2 Benchmarking Experiment

The real-parameter search algorithm under consideration is run on a testbed of
benchmark functions to be minimized. On each function and for each dimen-
sionality Ntrials trials are carried out. Different function instances are used,
each of them three times (the five instantiation numbers 1, 2, . . . , 5 are used).1 A
MATLAB example script for this procedure is given in Figure 1. The algorithm
is run on all functions of the testbed under consideration.

2.1 Input to the Algorithm and Initialization

An algorithm can use the following input.

1. the search space dimensionality D

2. the search domain; all functions are defined everywhere in RD and have
their global optimum in [−5, 5]D. Most functions have their global opti-
mum in [−4, 4]D which can also be a reasonable setting for initial solutions.

3. indication of the testbed under consideration, i.e. different algorithms
and/or parameter settings might well be used for the noise-free and the
noisy testbed

4. the target function value ftarget is provided for conclusive termination
of trials, in order to reduce the overall CPU requirements. The target
function value is not intended to be utilized as algorithm input otherwise.

Based on these input parameters, the parameter setting and initialization
of the algorithm is entirely left to the participants. As a consequence, the
setting shall be identical for all benchmark functions of one testbed (the function
identifier or any known characteristics of the function are not meant to be input
to the algorithm, see also Section 4).

2.2 Termination Criteria and Restarts

Each trial can be conclusively terminated if ftarget is reached. Otherwise, the
choice of termination is considered as part of the algorithm. Algorithms with
any budget of function evaluations, small or large, will be considered in the
analysis of the results. Reasonable termination criteria are recommended, but
exploiting a larger number of function evaluations might increase the chance to

1If the algorithm does not contain any stochastic elements, such as a random choice of the
initial point in the search domain, one trial per instance is sufficient.

3



Figure 1: exampleexperiment.m: example for benchmarking MY OPTIMIZER
on the noise-free function testbed in MATLAB/Octave. An example for the
function MY OPTIMIZER is given in Appendix A

% runs an entire experiment for benchmarking MY_OPTIMIZER

% on the noise-free testbed. fgeneric.m and benchmarks.m

% must be in the path of Matlab/Octave

% CAPITALIZATION indicates code adaptations to be made

addpath(’PUT_PATH_TO_BBOB/matlab’); % should point to fgeneric.m etc.

datapath = ’PUT_MY_BBOB_DATA_PATH’; % different folder for each experiment

opt.algName = ’PUT ALGORITHM NAME’;

opt.comments = ’PUT MORE DETAILED INFORMATION, PARAMETER SETTINGS ETC’;

maxfunevals = ’20 * dim’; % SHORT EXPERIMENT, takes overall three minutes

more off; % in octave pagination is on by default

t0 = clock;

rand(’state’, sum(100 * t0));

for dim = [2,3,5,10,20,40] % small dimensions first, for CPU reasons

for ifun = benchmarks(’FunctionIndices’) % or benchmarksnoisy(...)

for iinstance = [1:5, 1:5, 1:5] % first 5 fct instances, three times

fgeneric(’initialize’, ifun, iinstance, datapath, opt);

MY_OPTIMIZER(’fgeneric’, dim, fgeneric(’ftarget’), eval(maxfunevals));

disp(sprintf([’ f%d in %d-D, instance %d: FEs=%d,’ ...

’ fbest-ftarget=%.4e, elapsed time [h]: %.2f’], ...

ifun, dim, iinstance, ...

fgeneric(’evaluations’), ...

fgeneric(’fbest’) - fgeneric(’ftarget’), ...

etime(clock, t0)/60/60));

fgeneric(’finalize’);

end

disp([’ date and time: ’ num2str(clock, ’ %.0f’)]);

end

disp(sprintf(’---- dimension %d-D done ----’, dim));

end
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achieve better function values or solve the function up to the final ftarget
2. We

suggest to consider a multistart procedure.
Independent restarts are the most simple meta-heuristic for multistarts. For

example, given a fast algorithm with a small success probability, say 5% (or
1%), chances are that not a single trial (out of 15) will be successful. With 10
(or 90) independent restarts, the success probability will increase to 40% and
the performance of the algorithm will become visible. At least 4–5 successful
trials (out of 15) are desirable to accomplish a stable performance measurement.
Generally, independent restarts do not change the main performance measure
ERT (see Appendix D.2), they only improve the reliability of the measured
value. This reasoning remains valid for any target function value (different
values will be considered in the evaluation).

Restarts with different parameter setups, for example with different (increas-
ing) population sizes, might be considered as well, as it has been applied quite
successfully [2]. Choosing different setups mimics what will be done in practice.
All restart mechanisms are finally considered as part of the algorithm under
consideration.

3 Time Complexity Experiment

In order to get a rough measurement of the time complexity of the algorithm,
the overall CPU time is measured when running the algorithm on f8 (Rosen-
brock function) for at least a few tens of seconds (and at least a few iterations).
The chosen setup should reflect a “realistic average scenario”. If another termi-
nation criterion is reached, the algorithm is restarted (like for a new trial). The
CPU-time per function evaluation is reported for each dimension. The time
complexity experiment is conducted in the same dimensions as the benchmark-
ing experiment. The chosen setup, coding language, compiler and computational
architecture for conducting these experiments are described. Figure 2 shows a
respective MATLAB/Octave code example. For CPU-inexpensive algorithms
the timing might mainly reflect the time spent in function fgeneric.

4 Parameter setting and tuning of algorithms

The algorithm and the used parameter setting for the algorithm should be de-
scribed thoroughly. Whether or not all functions were approached with the very
same parameter setting (which might well depend on the dimensionality, see Sec-
tion 2.1) should be stated clearly and the crafting effort should be given (see
below). The crafting effort is zero, if the setting was identical for all functions.
The method of choosing the parameters for the testbed should be described, as
well as which parameters were adjusted to the testbed, the number of overall
settings evaluated and the number of settings finally used.

In general, we discourage the a priori use of function-dependent parameter
settings. In other words, we do not consider the function ID or any function
characteristics (like separability, multi-modality, . . . ) as input parameter to the

2We expect that the easiest functions can be solved in less than 10D function evalua-
tions, while the most difficult functions might need a budget of more than 1000D2 function
evaluations to reach the final ftarget = fopt + 10−8.
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Figure 2: exampletiming.m: example for measuring the time complexity of
MY OPTIMIZER given in MATLAB/Octave. An example for MY OPTIMIZER
is given in Appendix A

% runs the timing experiment for MY_OPTIMIZER. fgeneric.m

% and benchmarks.m must be in the path of MATLAB/Octave

addpath(’PUT_PATH_TO_BBOB/matlab’); % should point to fgeneric.m etc.

more off; % in octave pagination is on by default

timings = [];

runs = [];

dims = [];

for dim = [2,3,5,10,20,40]

nbrun = 0;

ftarget = fgeneric(’initialize’, 8, 1, ’tmp’);

tic;

while toc < 30 % at least 30 seconds

MY_OPTIMIZER(@fgeneric, dim, ftarget, 1e5); % adjust maxfunevals

nbrun = nbrun + 1;

end % while

timings(end+1) = toc / fgeneric(’evaluations’);

dims(end+1) = dim; % not really needed

runs(end+1) = nbrun; % not really needed

fgeneric(’finalize’);

disp([[’Dimensions:’ sprintf(’ %11d ’, dims)]; ...

[’ runs:’ sprintf(’ %11d ’, runs)]; ...

[’ times [s]:’ sprintf(’ %11.1e ’, timings)]]);

end

algorithm (see also Section 2.1). Instead, we encourage either using multiple
runs with different parameters (for example restarts, see also Section 2.2), or
using (other) probing techniques for identifying function-wise appropriate pa-
rameters online. The underlying assumption in this experimental setup is that
also in practice we do not know in advance whether the algorithm will face f1 or
f2, a unimodal or a multimodal function, or. . . and we cannot adjust algorithm
parameters a priori3.

In case that, nevertheless, in one dimension K > 1 different parameter
settings were finally used, the following entropy measure (crafting effort, see
also [4, 8]4) needs to be provided for each dimensionality D:

CrE = −
K∑

k=1

nk

n
ln
(nk

n

)
(1)

3In contrast to most other function properties, the property of having noise can usually
be verified easily. Therefore, for noisy functions a second testbed has been defined. The two
testbeds can be approached a priori with different parameter settings or different algorithms.

4Our definition differs from [4, 8] in that it is independent of the number of adjusted
parameters. Only the number of used different settings is relevant.
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where n =
∑K

k=1 nk is the number of functions in the testbed and nk is the
number of functions, where the parameter setting with index k was used, for
k = 1, . . . ,K. When a single parameter setting was used for all functions, as
recommended, the crafting effort is CrE =

∑1
k=1

n
n ln

(
n
n

)
= 0.5

5 Data to Provide

The provided implementations of the benchmark functions generate data for
reporting and analysis. Since one goal is the comparison of different algorithms,
the data from the experiments shall be submitted to
http://coco.gforge.inria.fr/doku.php?id=bbob-2009. All submitted data
will become available to the participants.

6 Post-Processing and Data Presentation

Python scripts are provided to produce tables and figures reporting the outcome
of the benchmarking experiment.

Given the output data from the experiment are in the folder my data of the
current directory,6 the following command line needs to be executed7.

python path_to_postproc_code_folder/bbob_pproc/run.py my_data

This will create a folder ppdata in the working directory that will contain the
output from the post-processing. Finally the command

latex templateBBOBarticle

executed in the same directory will compile a report template8 with tables
and figures created from the data in ppdata. The folder ppdata, the files
templateBBOBarticle.tex and acm_proc_article-sp.cls (ACM SIG pro-
ceedings template) have to be in the working directory. For the noisy testbed
the template templateBBOBnoisyarticle.tex is provided.

5We give another example: say, in 5-D all functions were optimized with the same parame-
ter setting. In 10-D the first 14 functions were approached with one parameter setting and the
remaining 10 functions with a second one (no matter how many parameters were changed).
In 20-D the first 10 functions were optimized with one parameter setting, functions 11–13 and
functions 23–24 were optimized with a second setting, and the remaining 9 functions 14–22
were optimized with a third setting. The crafting effort computes independently for each
dimension in 5-D to CrE5 = 0, in 10-D to CrE10 = −

`
14
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�

http://coco.gforge.inria.fr/doku.php?id=bbob-2009
acm_proc_article-sp.cls
http://www.python.org/download/releases/2.5.4/
http://numpy.scipy.org
http://matplotlib.sourceforge.net
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APPENDIX

A Example Optimizer wath Dultistarts

The optimizer used in Fig. 1 and 2 is given in Fig. 3.

B How to Resume an Experiment

We give a short description of how to cleanly resume an experiment that was
aborted before its completion.

1. Find the last modified .info file (see Appendix E). Function number and
dimension, where the experiment was aborted, are given in the third to
last line of the file. For example:

funcId = 13, DIM = 40, Precision = 1.000e-08, algId = ’my optimizer’

% all default parameters

data_f13/bbobexp_f13_DIM40.dat, 1:5387|-4.4e-09, 2:5147|-3.9e-09, 3

The last line points to the written data file and the last number in the
last line contains the function instance number of the unfinished trial (see
also Appendix E).

Now, there are two options: either restarting by rerunning all experiments
for f13 in 40-D, or restarting from the very instance 3, which is more involved.

Option 1 (rerun the complete “line” in info file)

2. (optional) delete the respective two(!) data files, in our example

data_f13/bbobexp_f13_DIM40.dat
data_f13/bbobexp_f13_DIM40.tdat

3. delete the last three lines in the info file

4. modify your experiment script (see e.g. Fig. 1) to restart wath the
respective function and dimension, here f13 in 40-D

Option 2 (rerun from the broken trial)

2. remove the last characters, in the above example, “, 3” from the last
line of the info file. If the first entry is already the unfinished one,
refer to .73 -11.933(TJ
0 g 0 G
 12.1-)-525(=) 231.4633(TJ
0 Th019(data)-120(th)1(e)]TJ 12.73 -1)-12o tncedataber 300(th4(tain.9626 60)-263(exampl67 g 2,)-525(3b)5TJ 8(t 9.9626 Tf 111.8452.3233(here)]o)-41(”)-2677.515391(unfinish-391(os,8(v)28(e)-263(exampl4(. Td [(for) Td [(da9626 Tf 111.845455 33(here)]n)-302(01(last)-302(mo)9.ingd [(for) tTd [(da9626 Tf 111.845,)-527(“)]TJ/g 0 G
 [-33434(fil)1(e)p33(in)-333(our)-333(exam)-1(p)1(le)]TJ-82.053TJ
0 g 0 G
/F85 9.9626 Tf 23.191 -19.925 Td [(data_f13/bbobexp_f13_DIM40.dat)]TJ 0 -11.955 Td [(data_f13/bbobexp_f13_DIM40.tdat)]TJ
0 g 5334(file)]TJ
0 g 0 G
 0 -15.94 Td [(4.)]06
0 gersu.)]06
(mo)-27(dify)-417(y)2705W)83(e)-41)1(y)2706[-420(06[TJ
0 g 0 G06
0 gersur.)]06
(mo)-28(dify)-419(y)2706
 9.962706[-his20(restart)-420(wath)-42tarting)-333455 )-40d [(resp)-2rom)-334(the3 -21.(ery)-333(instacan)]TJ 0 -11.95)]TJ 0a



Figure 3: Example optimizer used in Fig. 1 and 2

function [x, ilaunch] = MY_OPTIMIZER(FUN, DIM, ftarget, maxfunevals)

% minimizes FUN in DIM dimensions by multistarts of fminsearch.

% ftarget and maxfunevals are additional external termination conditions,

% where at most 2 * maxfunevals function evaluations are conducted.

% fminsearch was modified to take as input variable usual_delta to

% generate the first simplex.

% set options, make sure we always terminate

% with restarts up to 2*maxfunevals are allowed

options = optimset(’MaxFunEvals’, min(1e8*DIM, maxfunevals), ...

’MaxIter’, 2e3*DIM, ...

’Tolfun’, 1e-11, ...

’TolX’, 1e-11, ...

’OutputFcn’, @callback, ...

’Display’, ’off’);

% multistart such that ftarget is reached with reasonable prob.

for ilaunch = 1:1e4; % relaunch optimizer up to 1e4 times

% set initial conditions

if mod(ilaunch-1, floor(1 + 3 * rand(1,1))) == 0

xstart = 8 * rand(DIM, 1) - 4; % random start solution

usual_delta = 2;

else

xstart = x; % try to improve found solution

usual_delta = 0.1 * 0.1^rand(1,1);

end

% try fminsearch from Matlab, modified to take usual_delta as arg

x = fminsearch_mod(FUN, xstart, usual_delta, options);

if feval(FUN, ’fbest’) < ftarget || ...

feval(FUN, ’evaluations’) >= maxfunevals

break;

end

% if useful, modify more options here for next launch

end

function stop = callback(x, optimValues, state)

stop = false;

if optimValues.fval < ftarget

stop = true;

end

end % function callback

end % function
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C Rationales Behind the Parameter Settings

Rationale for the choice of Ntrials Parameter Ntrials determines the
minimal measurable success rate and influences the overall necessary CPU time.
Compared to a typical standard setup, we have chosen a comparatively small
value for Ntrials. Consequently, within the same CPU-time budget, single
trials can conduct more function evaluations, if needed or desired (only needed
as long as ftarget is not reached). For algorithms with a small success probability,
say smaller than 20%, this setup leaves the burden to implement an automated
multistart procedure, as it will be necessary in practice (see also Section 2.2).

Rationale for the choice of ftarget The initial search domain and the tar-
get function value are an essential part of the benchmark function definition.
Different target function values might lead to a different characteristics of the
problem to be solved, besides that larger target values are invariably less dif-
ficult to reach. Functions might be easy to solve up to a function value of 1
and become intricate for smaller target values. The actually chosen value for
the final ftarget is somewhat arbitrary and could be changed by simple modifi-
cations in the function definition. The performance evaluation will consider a
wide range of different target function values to reach, all being larger or equal
to the final ftarget.

D Rationale Behind the Data Presentation

D.1 Performance Measures

We advocate performance measures that are

• quantitative, ideally with a ratio scale (rather than interval or ordinal
scale)9 and with a wide variation (i.e. for example not with values usually
ranging between 0.98 and 1)

• as simple as possible

• well-interpretable, having a meaning and semantics attached to the num-
bers

• relevant with respect to the “real world”

D.2 Expected Running Time

We use the expected running time (ERT) as most prominent performance mea-
sure, more precisely, the expected number of function evaluations to reach a
target function value for the first time. For ps > 0 the ERT computes to [1]

9See http://web.uccs.edu/lbecker/SPSS/scalemeas.htm or
http://en.wikipedia.org/w/index.php?title=Level_of_measurement&oldid=261754099 for
an introduction to scale types.
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ERT(ftarget) = RTS +
1− ps

ps
RTUS (2)

=sRTS + (1− ps)RTUS
ps

(3)

= fbest ≥ ftarget)#succ
(4)

where the running times RTS and RTUS denote the average number of function
evaluations for successful and unsuccessful trials, respectively (zero for none),
and ps denotes the fraction of successful trials, where successful trials are those
that reached ftarget. The #FEs(fbest ≥ ftarget) is the number of function eval-
uations conducted in all trials, while the best function value was not smaller
than ftarget during the trial, i.e. the sum over all trials of

max{FE s.t. fbest(FE) ≥ ftarget} .

The #succ denotes the number of successful trials. ERT estimates the expected
running time to reach ftarget [1]. ERT is a function of ftarget, as in particular
RTS and ps depend on the chosen value for ftarget.

D.3 Bootstrapping

The ERT computes a single measurement from a data sample set (in our case
from Ntrials optimization runs). Bootstrapping [3] can provide a dispersion
measure for such a measurement: a “new” data sample is derived from the
original data sample, in that s values are drawn with replacement, where s
is the size of the original set. For each new data set ERT can be computed.
The distribution of the bootstrapped ERT is, besides its displacement, a good
approximation of the true distribution of ERT (because our sample size is finite,
ERT is liable to stochastic aberrations). We provide some percentiles of the
bootstrapped distribution.

D.4 Fixed-Cost versus Fixed-Target Scenario

There exist two different approaches for collecting data and making measure-
ments from experiments, as schematically depicted in Figure 4.

Fixed-cost scenario (vertical cuts). Fixing a number of function evalua-
tions (this corresponds to fixing a cost) and measuring the function values
reached for this given number of function evaluations. Fixing search costs
can be pictured as drawing a vertical line on the convergence graphs (see
Figure 4 where the line is depicted in red).

Fixed-target scenario (horizontal cuts). Fixing a target function value
(i.e. drawing an horizontal line in the convergence graphs, see Figure 4
where the line is depicted in blue) and measuring the number of function
evaluations needed to reach this target function value.It is often argued that the fixed-cost approach is close to what is needed for real

word applications where the total number of function evaluations is limited. On12



Figure 4: Illustration of fixed-cost (vertical cuts) and fixed-target (horizontal
cuts) view. Black lines depict the best function value plotted versus number of
function evaluations.

the other hand, also a minimum target requirement needs to be achieved in real
world applications, for example, getting (noticeably) better than the currently
available best solution or than a competitor.

For benchmarking algorithms we prefer the fixed-target scenario over the
fixed-cost scenario since it gives quantitative and interpretable data: the fixed-
target scenario (horizontal cut) measures a time needed to reach a target func-
tion value and allows therefore conclusions of the type: Algorithm A is two/ten/
hundred times faster than Algorithm B in solving this problem (i.e. reaching
the given target function value). The fixed-cost scenario (vertical cut) does not
give quantitatively interpretable data: there is no interpretable meaning to the
fact that Algorithm A reaches a fitness value that is two/ten/hundred times
smaller than the one reached by Algorithm B, mainly because there is no a
priori evidence how much more difficult it is to reach a fitness value that is
two/ten/hundred times smaller. Furthermore, for algorithms invariant under
transformations of the function value (for example order-preserving transfor-
mations for algorithms based on comparisons like DE, ES, PSO), fixed-target
measures can be made invariant to these transformations by simply transform-
ing the target function value while for fixed-cost measures all results need to be
transformed.

D.5 Empirical Cumulative Distribution Functions

We exploit the “horizontal and vertical” viewpoints introduced in the last Sec-
tion D.4. In Figure 5 we plot the empirical cumulative distribution function10

(ECDF) of the intersection point values (stars in Figure 4). A cutting line in
Figure 4 corresponds to a “data” line in Figure 5, where 450 (30 × 15) con-
vergence graphs are evaluated. For example, the thick red graph in Figure 5
shows on the left the distribution of the running length (number of function
evaluations) [7] for reaching precision ∆f = 10−8 (horizontal cut). The graph

10 The empirical (cumulative) distribution function F : R→ [0, 1] is defined for a given set
of real-valued data S, such that F (x) equals the fraction of elements in S which are smaller
than x. The function F is monotonous and a lossless representation of the (unordered) set S.
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Figure 5: Illustration of empirical (cumulative) distribution functions (ECDF)
of running length (left) and precision (right) arising respectively from the fixed-
target and the fixed-cost scenarios in Fig. 4. In each graph the data of 450
trials are shown. Left subplot: ECDF of the running time (number of function
evaluations), divided by search space dimension D, to fall below fopt + ∆f with
∆f = 10k, where k = 1,−1,−4,−8 is the first value in the legend. Right sub-
plot: ECDF of the best achieved precision ∆f divided by 10k (thick red and
upper left lines in continuation of the left subplot), and best achieved precision
divided by 10−8 for running times of D, 10 D, 100 D and 1000 D function evalu-
ations (from the rightmost line to the left cycling through black-cyan-magenta-
black).

continues on the right as a vertical cut for the maximum number of function
evaluations, showing the distribution of the best achieved ∆f values, divided
by 10−8. Run length distributions are shown for different target precisions ∆f
on the left (by moving the horizontal cutting line up- or downwards). Precision
distributions are shown for different fixed number of function evaluations on the
right. Graphs never cross each other. The y-value at the transition between left
and right subplot corresponds to the success probability. In the example, just
under 50% for precision 10−8 (thick red) and just above 70% for precision 10−1

(cyan).

E Data and File Formats

E.1 Introduction

This section specifies the format for the output data files and the content of the
files, as they are written by the provided benchmark functions implementations.
The goal is to obtain format-identical files which can be analyzed with the
provided post-processing tools. The first section explains the general settings.
Afterwards the format for the different output files will be given in detail and
with examples.
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↪→ container folder

↪→ fileprefix f1.info

↪→ data f1

↪→ fileprefix f1 DIM5.dat

↪→ fileprefix f1 DIM5.tdat

↪→ fileprefix f1 DIM10.dat

↪→ fileprefix f1 DIM10.tdat

↪→ fileprefix f2.info

↪→ data f2

↪→ fileprefix f2 DIM5.dat

↪→ fileprefix f2 DIM5.tdat

↪→ container folder2

↪→ ...

Figure 6: Example data file structures obtained with the BBOB experiment
software.

E.2 General Settings

The output from one experiment, consisting of Ntrials optimization runs on a
given objective function, will be contained in a folder which path will be decided
by the user and will consist of one index file (or more) and two data files (or
more). The output files contain all necessary data for post-processing. The
extensions are ’*.info’ for the index file and ’*.dat’, ’*.tdat’ for the data files.
An example of the folder/file structure can be found in Fig 6. After performing
all simulations, the user can use the data files with the provided post-processing
tool to obtain LATEX files, including tables and figures of the results.

E.3 Output Files

E.3.1 Index File

The index file contains meta information on the optimization runs and the
location of the corresponding data files. The user is free to choose any prefix
for the index file name. The function identifier will be appended to it and the
extension will be ’.info’. The contents of the index file are the concatenation of
3-line index entries (output format is specified in brackets):

• 1st line - function identifier (%d), search space dimension (%d), precision
to reach (%4.3e) and the identifier of the used algorithm (%s)

• 2nd line - comments of the user (e.g. important parameter or used internal
methods)

• 3rd line - relative location and name of data file(s) followed by a colon
and information on a single run: the instance of the test function, final
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number of function evaluations, a vertical bar and the final best function
value minus target function value.

All entries in the 1st line and the 3rd line are separated by commas.
For each experiment the provided data-writing tools generate one index file

with the respective entries. All index files have to be included in the archive
for the submission and will contain the relative location of the data files within
the archive. Thus, it is necessary to archive all files in the same folder-subfolder
structure as obtained. An example of an index file is given in Fig 7. An entry of

funcId = 12, DIM = 5, Precision = 1.000e-08, algId = ’ALG-A’

% parameterA = 2, parameterB = 3.34, ...

data f12\test f12 DIM5.dat, 1:387|-2.9e-009, 2:450|-2.8e-009, 3:422|-2.1e-009, data f12\test-01 f12 DIM5.dat, 1:5000000|1.8e-008,
...

funcId = 12, DIM = 10, Precision = 1.000e-08, algId = ’ALG-A’

% parameterA = 2, parameterB = 3.34, ...

data f12\test1 f12 DIM10.dat, 1:307|-8.6e-008, 2:321|-3.5e-008, ...

...

Figure 7: Example of an index file

the index file is written at the start of the first sample run for a given function
and dimension.

E.3.2 Data Files

A data file contains the numerical output of an optimization run on a given
objective function. The content of the data file is given in the following. Data
files will be placed in subfolders at the location of their corresponding index
file. At the start of each sample run the header for the data file is written. The
header is one line with the titles for each data column:

• function evaluation

• noise-free fitness - Fopt (and its value)

• best noise-free fitness - Fopt

• measured fitness

• best measured fitness

• x1, x2, . . . (one column for each dimension)

Fopt is the optimum of the test function considered. In the header, each of these
entries are separated by the |-symbol. Each data line in the data file contains
the following information:

• 1st column - recent number of function evaluation in format %d

• 2nd column - recent noise-free function value in format %+10.9e

• 3rd column - best noise-free function value so far in format %+10.9e

• 4th column - recent measured (noisy) function value in format %+10.9e

• 5th column - best measured (noisy) function value so far in format %+10.9e

• (5+d)th column - value of the dth (d = 1, 2, . . . , DIM) object parameter
of the best so far noise-free function value (3rd column) in format %+5.4e
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% function evaluation | noise-free fitness - Fopt (6.671000000000e+01) | best noise-free fitness - Fopt | measured fitness | best

measured fitness | x1 | x2 |...
1 +9.324567891e+05 +9.324567891e+05 +1.867342122e+06 +1.867342122e+06 +4.2345e+01 ...

2 +9.636565611e+05 +9.324567891e+05 +8.987623162e+05 +8.987623162e+05 +3.8745e+01 ...

...

31623 9.232667823e+01 9.576575761e+01 -6.624783627e+01 -1.657621581e+02 +5.1234e-02 ...

32478 1.000043784e+02 9.576575761e+01 -4.432869272e+01 -1.657621581e+02 +3.8932e-02 ...

35481 ...

...

Figure 8: Example of a data file

An example is given in Fig 8.
Each entry in the index files is associated to at least two data files: one for the

function value-aligned data and another for the number of function evaluations-
aligned data. The data file names are identical except for the file extension
being ’*.dat’ and ’*.tdat’ respectively.

The writing to the function value aligned data file happens only each time
the noise-free function value minus the optimum function value is less than 10i/5,
for all integer i, for the first time (note, that the provided software does not
return this difference to the algorithm).

The writing to the number of function evaluations aligned data file happens:

• in the first file each time the function evaluation number is equal to⌊
10i/20

⌋
for at least one i = 1, 2, . . . This means, that writing happens

after about 12.2% additional function evaluations have been conducted.
In particular the first 8 evaluations are written and also evaluations . . . ,
89, 100, 112, 125, 141,. . . , 707, 794, 891, 1000, 1122,. . .

• when any termination criterion is fulfilled (writing the recent evaluation
and the current best so far values)

The prefix for the data file names of one experiment will be the same as the
prefix of the corresponding index file. The function identifier and the dimension
of the object parameters will be appended to this prefix. All data files will be
saved in subfolders data fX, where X is the function identifier, located at the
same location as their index file.
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