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// Initialization phase

1 G = 1, NG = N
init , Archive A = ∅;

2 Initialize population PG = (x1,G, ...,xN,G) randomly;
3 Set all values in MCR, MF to 0.5 and k = 1;
// Main loop

4 while The termination criteria are not met do

5 SCR = ∅, SF = ∅;
6 for i = 1 to N do

7 ri = Select from [1,H] randomly;
8 If MCR,ri = �, CRi,G = 0. Otherwise

CRi,G = randni(MCR,ri ,0.1);
9 Fi,G = randci(MF,ri ,0.1);

10 Generate trial vector ui,G according to
current-to-pbest/1/bin;

11 for i = 1 to N do
12 if f(ui,G) < f(xi,G) then

13 xi,G →A, CRi,G → SCR, Fi,G → SF ;
14 xi,G+1 = ui,G;

15 else
16 xi,G+1 = xi,G;

17 If necessary, delete randomly selected individuals from the
archive such that the archive size is ∣A∣.

18 Update memories MCR and MF (Algorithm 2);
19 G = G + 1;

Algorithm 1: SHADE algorithm

Using the CEC2014 benchmarks [3] as the training data, we

apply the algorithm configuration tool SMAC [18] in order to

tune the parameters for standard DE, as well as several variants

of SHADE [16], [17], a state-of-the-art adaptive DE algorithm,

under 3 different scenarios: (1) expensive scenario: 102 ×D
fitness evaluations, (2) medium scenario: 104×D evaluations,

and (3) cheap scenario: 105 ×D evaluations, where D is the

benchmark problem dimensionality. The tuned configurations

are then tested using the 24 problems in the BBOB noiseless

benchmarks [19], [20]. In addition, we compare these tuned

DEs to three restart CMA-ES variants that have been shown to

perform well on the BBOB benchmarks: HCMA [21], BIPOP-

CMA-ES [22], and IPOP-CMA-ES [8].

II. SUCCESS-HISTORY BASED ADAPTIVE DE (SHADE)

In this section, we describe SHADE, which is currently

one of the state-of-the-art adaptive DE algorithms [16], [17].



assigned the terminal value �, then MCR will remain fixed

at � until the end of the search.

B. R-SHADE: SHADE with Restart

This section describes R-SHADE, which incorporates

restarts into SHADE. Restart strategies that reset and restart

the search when search progress has stalled have been widely

used in the EC community (c.f. [23]). When implementing

a restart strategy, the major design decision is the restart

criterion, which determines when a restart is necessary. If the

restart criterion is too aggressive, then the algorithm might

restart even though search has not really converged. On the

other hand, if the restart criterion is too conservative, then

valuable time may be wasted on an unproductive search effort.

Many restart criteria have been proposed in the literature. In

this paper, we adopt a restart strategy that uses the following

3 criteria (the first two criteria were described in [24]).3

(1) Solution vector x convergence

When there exists some j = (1, ...,D) for which ∆xj

(defined below) is small, restart because the solution

vectors have probably converged. In this paper, εx =
1e−12.

∃j ∆xj < εx max
i=1,...,N

{∣xi,j ∣} (2)

∆xj = max
i=1,...,N

{xi,j} − min
i=1,...,N

{xi,j} (3)

(2) Fitness value f(x) convergence

When there exists some k = (1, ...,N) for which ∆fk
(defined below) is small, restart because the fitness

values have probably converged. In this paper, εf =
1e−12.

∃k∆fk < εf max
i=1,...,N

{∣fi∣} (4)

∆fk = max
i=1,...,N

{fi} − min
i=1,...,N

{fi} (5)

(3) Lack of updates to best-so-far solution

If, within a particular restart iteration, the best-so-

far solution in its iteration has not been updated for

Evalsstop steps, then restart because the search has

probably stopped making progress. In this paper, we

used Evalsstop = 500 ×D.

R-SHADE is a simple modification of SHADE which

applies the three restarts describe above. In Algorithm 1, if

any of restart criteria (1), (2), (3) are met, then the search is

restarted starting at line 1.

C. L-SHADE: SHADE with Linear Population Size Reduction

Strategy

L-SHADE [17] is a variant of SHADE algorithm with Lin-
ear Population Size Reduction (LPSR), a simple deterministic
population resizing method and a special case of SVPS [25]

3In preliminary experiments, there were several multimodal benchmark
problems where criteria (1) and (2) failed to detect that search had clearly
stalled in some circumstances, so we added (3); we also tested (3) by itself,
and found that applying all three criteria performed slightly better than (3)
by itself, so we used a combination of all 3 criteria in this study.

// Initialization phase

1 MaxEvals1iter = MaxEvals/B;
2 Evals= 0;
// Main loop

3 while The termination criteria are not met do

4 Run L-SHADE with budget MaxEvals1iter ;

5 Evals+ = MaxEvals1iter ;

// Adjust MaxEvals1iter to remained budget

6 if MaxEvals1iter > MaxEvals − Evals then

7 MaxEvals1iter = MaxEvals − Evals;

Algorithm 3: RL-SHADE algorithm

which reduces the population linearly, and requires only 1
parameter which needs to be tuned (initial population size
N init). LPSR continuously reduces the population to match
a linear function where the population size at generation 1 is
N init, and the population at the end of the run is Nmin. At
the end of each generation G (line 19), the population size
in the next generation, NG+1, is computed according to the
formula:

NG+1 = round [(Nmin −N init

MaxEvals
) ⋅Evals +N init] (6)

Nmin is set to the smallest possible value such that the

evolutionary operators can be applied. In the case of L-

SHADE, Nmin = 4 because the current-to-pbest mutation

operator requires 4 individuals. Evals is the current number

of fitness evaluations, and MaxEvals is the maximum number

of fitness evaluations.

For explorative search in the beginning of the search, L-

SHADE uses a relatively large initial population size N init

and reduces its size gradually. As a result, the search is

executed with a small population size and becomes more

exploitative. This deterministic population resizing mechanism

makes L-SHADE more robust and effective.

D. RL-SHADE: L-SHADE with Restart

As with SHADE, it seems natural to extend L-SHADE

by implementing a restart strategy. However, in preliminary

experiments, we observed that L-SHADE does not tend to

converge until the population size has shrunk to the minimal

population size Nmin, i.e., until MaxEvals evaluations have

been performed. This is because L-SHADE starts with a rela-

tively large population size. Thus, instead of the same restart

criterion as R-SHADE, RL-SHADE implements a slightly

modified restart strategy.

RL-SHADE (Algorithm 3), which is L-SHADE extended

with restarts, relies on a single restart criterion which is a

modified version of criterion (3) above. Each iteration executes

for at least MaxEvals1iter = MaxEvals/B fitness evaluations,

where B ≥ 1. If at least MaxEvals1iter .4226(v)18.1979(a)-1.66638(l)0.965521(u)-5.89115(a)-1.66638(t)0.965521(i)0.965521(o)-5.89115(n)-5.89115(s)-393.933.708403(t)6215(e)-1.66638(c)-1.671(a)0els



TABLE I: For each DE variant, the default control parameter

values, as well as the best parameters found by tuning the

algorithm with SMAC using CEC2014 benchmark problems

F1 ∼ F16 (for D = 2,10,20) as training problems.

(a) R-DE

Parameters Range Default
MaxEvals

10
2 ×D

MaxEvals

10
4 ×D

MaxEvals

10
5 ×D

population rate [0, 10] 5.0 0.15 1.16 1.45

F [0.1, 1] 0.5 0.74 0.53 0.61

CR [0, 1] 0.5 0.39 0.31 0.17

strategy see the text rand/1 current-to-pbest/1 best/1 best/1

p [0, 0.2] 0.05 0.03 n/a n/a

archive rate [0, 2] 1.0 0.68 n/a n/a

(b) R-SHADE

Parameters Range Default
MaxEvals

10
2 ×D

MaxEvals

10
4 ×D

MaxEvals

10
5 ×D

population rate [0, 10] 5.0 0.45 3.74 3.96

initial MF [0, 1] 0.5 0.90 0.53 0.38

initial MCR [0, 1] 0.5 0.06 0.71 0.94

p [0, 0.2] 0.05 0.01 0.13 0.09

archive rate [0, 2] 1.0 1.92 0.65 0.12

memory size [1, 20] 10 16 10 11

(c) RL-SHADE

Parameters Range Default
MaxEvals

10
2 ×D

MaxEvals

10
4 ×D

MaxEvals

10
5 ×D

initial population rate [10, 20] 15 5.19 13.63 16.39

initial MF [0, 1] 0.5 0.84 0.93 0.28

initial MCR [0.1, 1] 0.5 0.12 0.72 0.43

p [0, 0.2] 0.05 0.01 0.09 0.02

archive rate [0, 2] 1.0 1.13 1.86 0.94

memory size [1, 20] 10 7 3 7

B [1, 10] 1 8 1 5

Although we omit the data due to space constraints, RL-

SHADE outperforms standard L-SHADE for cheap scenarios

(MaxEvals = 105 ×D).

III. TUNING THE PARAMETERS USING SMAC

A. Settings

In this section, we describe parameter tuning of R-DE,

R-SHADE, and L-SHADE using the automated algorithm

configuration tool, SMAC. Where, R-DE is the standard DE

algorithm [11] with restart strategy as same with R-SHADE

described in Section II-B.

In recent years, automated algorithm configuration has been

an active area of research in both the AI and EC communities,

and within the DE community, our previous work on L-

SHADE has demonstrated the utility of an algorithm configu-

ration tool for parameter tuning [17]. An algorithm configura-

tor takes as input an algorithm executable, a formal description

of the parameters for the algorithm, and a set of training

problem instances. It searches the space of possible parameter

values by repeatedly generating a candidate configuration (e.g.,

by local search) and evaluating the configuration on the set of

the training instances (or some intelligently selected subset of

training instances). The configuration with highest expected

utility on the training set is returned. Well-known algorithm

configurators include ParamILS [26], irace [27], and SMAC

[18]. In this paper, we use SMAC, which is a surrogate-model

based configurator which can be used to tune real-valued,

integer-valued, categorical, and conditional parameters [18].

We used the most recent version of SMAC downloaded from

the authors’ website4.

The evaluation function used by SMAC to assess the quality

of a candidate DE configuration was the mean of the difference

between the solution found by the DE configuration and the

optimal value for each benchmark function in the training

set, consisting of functions F1 ∼ F16 in 2, 10, and 20

dimensions (i.e., 16 × 3 = 48 problems) from the CEC2014

benchmarks [3]5. We generated sets of tuned parameters for 3

different training scenarios (the DE algorithms were tuned for

3 different fitness evaluation limits): (1) expensive scenario

– 10
2 × D evaluations, (2) medium scenario – 10

4 × D

evaluations, and (3) cheap scenario – 10
5 × D evaluations.

Each run of SMAC was limited to 3,000 DE configurations.

For each DE variant, for each training scenario, SMAC was

run 5 times, and we selected the best result out of these 5

runs. Finally, SMAC itself has some parameters that control

the algorithm configurator; we used the default parameters for

these.

B. SMAC Results

For each DE variant, the default values of the control pa-

rameters (from [15], [16], [17]), the ranges for the parameters,

as well as the values found by SMAC, are shown in Table I.

Binomial crossover was used for all DE variants. For R-DE,

7 possible mutation strategies, rand/1, rand/2, best/1, best/2,

current-to-best/1, current-to-best/2, and current-to-pbest/1 with

archive could be selected.6 The “current-to-pbest/1 with

archive” strategy has control parameter p and archive rate;

these are modeled as conditional parameters [18] in SMAC.

The population size N = max(round(population rate ×

D),6), and archive size ∣A∣ = round(archive rate ×N). Note



population size is selected so that it is possible to greedily

search a focused area of the search space. On the other hand,

as MaxEvals increased from 10
2 ×D to 10

4 ×D to 10
5 ×D,

the population rate also increases, suggesting that as MaxEvals

increases, a less focused search that performs more exploration

leads to better performance. This tendency can be seen in the

tuned population rate of RL-SHADE.

As shown in Table I(c), when RL-SHADE is run with

MaxEvals = 10
2 × D and 10

5 × D, the restart frequency

parameter B is set to 8, 5 (restart frequently, approximately

8-5 times during the run). However, when MaxEvals= 104×D,

B = 1, i.e., no restarts (same as plain L-SHADE). Thus, the

behavior of RL-SHADE changes dramatically depending on

MaxEvals.

As shown above, the results of parameter tuning vary

significantly depending on MaxEvals. This is consistent with

previous results for ACO [7] and IPOP-CMA-ES [9], [10].

Thus, in practice, it is vital to carefully consider the available

computational budget when tuning DE algorithms.

IV. RESULTS

In this section, we evaluate the tuned parameter settings for

R-DE, R-SHADE, RL-SHADE obtained in Section III using

SMAC. For the test problems, we use the 24 problems in

the BBOB noiseless benchmark set [19], [20] (note that these

differ from the CEC2014 benchmarks [3] used as the training

problems).

We compare the DE variants to three CMA-ES variants that

are known well to perform well on the BBOB benchmarks,

HCMA [21], BIPOP-CMA-ES [22] and IPOP-CMA-ES [8].

IPOP-CMA-ES, upon which HCMA and BIPOP-CMA-ES are

based, incorporates a restart strategy into the basic CMA-ES

algorithm [28], and doubles the population size after each

restart, broadening the search after each restart. For IPOP-

CMA-ES, we used the data for IPOP-CMA-ES-tany and IPOP-

CMA-ES-texp, which are results using control parameters

tuned for anytime, expensive scenarios which was provided

in [9]. BIPOP-CMA-ES first executes CMA-ES with a default

population size. Then, it divides the remainder of the time

available evenly between IPOP-CMA-ES and multistart CMA-

ES with a small population size. HCMA [21] is a hybrid

method which incorporates a surrogate model and two local

search methods (NEWOUA [29] and STEP [30]) into BIPOP-

CMA-ES. All experimental data were downloaded from the

BBOB website [31].

A. Impact of Budget Scenario on Tuned Parameters

In this section, we evaluate the parameter settings obtained

for various MaxEvals in Section III. Figure 1 shows the

Empirical Cumulative Distribution Function (ECDF) for each

algorithm, each parameter setting, for 24 BBOB benchmark

problems (10 dimensions) for MaxEvals = {102 × D,104 ×

D,105 × D}. After the DE variant name, 10e2 indicates

the results for tuning with MaxEvals= 10
2 × D, 10e4 is for

MaxEvals= 104 ×D, and 10e5 is for MaxEvals= 105 ×D.

The results for R-DE in Figure 1(a) show that for Max-

Evals = 10
2 × D, R-DE-10e4 performs slightly better than

R-DE-10e2, and R-DE-10e5 is clearly worse than R-DE-

10e2. However, for MaxEvals = 104 ×D, R-DE-10e5 had the

best performance, and for MaxEvals = 10
5 ×D, R-DE-10e5

and R-DE-10e4 perform similarly. In contrast, for MaxEvals

= 104 ×D and 10
5 ×D, R-DE-10e2 performs poorly.

A similar trend can be seen for R-SHADE and RL-SHADE.

Figure 1(b) shows that although R-SHADE-10e2 performs

well for MaxEvals = 10
2 × D, it performs worse than R-

SHADE-10e4 and R-SHADE-10e5 for MaxEvals = 10
4 ×D

and MaxEvals= 105 ×D. Figure 1(c) shows that RL-SHADE-

10e2, RL-SHADE-10e4 and RL-SHADE-10e5 performs best

for MaxEvals = 102 ×D,104 ×D, and 10
5 ×D respectively.7

However, when the computational budget for the training

phase and the testing phase are different, RL-SHADE tends

to perform poorly.

In summary, it appears that the computational budget

(MaxEvals) used during parameter tuning has a significant

impact on performance of R-DE, R-SHADE, and RL-SHADE

when tested under different MaxEvals settings. Thus, when

MaxEvals used for training (tuning) and testing differ sig-

nificantly, it is likely that the parameters obtained by tuning

are inappropriate for the test problem, and one can not

expect good parameters when using parameters optimized for

a computational budget that significantly differ from the target

application scenario. If MaxEvals for a particular application

scenario of DE is known a priori, then it appears that tuning

the control parameters using a computational budget similar

to MaxEvals is necessary in order to maximize performance.

B. Comparing DE algorithms with state-of-the-art restart

CMA-ES variants

In this section, we compare DE algorithms to state-of-the-

art restart CMA-ES variants (HCMA, BIPOP-CMA-ES, IPOP-

CMA-ES). Figures 2 and 3 show the results for expensive

(MaxEvals = 10
2 × D) and cheap (MaxEvals = 10

5 × D)

scenarios for D = 2,3,5,10,20-dimensional BBOB bench-

marks (all 24 problems). For R-DE, R-SHADE, and RL-

SHADE, we tuned the parameters separately for expensive

and cheap scenarios. Since IPOP-CMA-ES-texp was designed

and tuned for expensive scenarios and BIPOP-CMA-ES was

tuned/designed for cheap scenarios, for fairness, we only

include IPOP-CMA-ES-texp data for the expensive scenario,

and BIPOP-CMA-ES data for the cheap scenario.

Figure 2 shows that in the expensive scenario, HCMA

performs best for all dimensions. For D = 2, 3, and 5

dimensions, R-DE-10e2 outperforms R-SHADE-10e2, RL-

SHADE-10e2, IPOP-CMA-ES-tany and IPOP-CMA-ES-texp.

In addition, R-DE-10e2 performs better than RL-SHADE-10e2

for all dimensions. This contradicts the widely held belief that

7Although the restart frequency parameter B for RL-SHADE-10e2 and RL-
SHADE-10e5 is set to 8 and 5 respectively (see Table I(c)), we observed that
they never restarted for MaxEvals = 10

2 ×DD0.970422(rn585(e)78]TJ
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tool and the CEC2014 benchmarks as training problems, we

tuned R-DE, R-SHADE, and RL-SHADE for three scenarios:

(1) expensive scenario: MaxEvals= 10
2 × D, (2) medium

scenario: MaxEvals= 104 ×D, (3) cheap scenario: MaxEvals=
10

5×D. We found that the parameter settings found by SMAC

depend significantly on MaxEvals. Each of the tuned param-

eter settings were then tested on the BBOB noiseless bench-

marks under all three scenarios (expensive/medium/cheap). We

showed that when MaxEvals is the same for both tuning and

testing, good performance can be expected, but performance

can be poor if MaxEvals for tuning and testing are not the

same.

The tuned DEs were compared with state-of-the-art restart

CMA-ES variants on the expensive and cheap scenarios.

For D = 2,3,5 dimensions in the expensive scenario, the

simple, restarting standard DE (R-DE) had the best perfor-

mance among all DE variants, and was competitive with the

restart CMA-ES variants, excluding HCMA (which includes

a surrogate-based component specialized for expensive sce-

narios). In the case of cheap scenarios, for low-dimensional

problems, R-SHADE and RL-SHADE were competitive with

restart CMA-ES variants, and for higher dimensions (D =
10,20), RL-SHADE outperforms BIPOP-CMA-ES and IPOP-

CMA-ES when the number of evaluations is around 10
4 ×D.

Our study showed that with tuning, a simple, restarting

version of standard DE can be surprisingly effective for low-

dimensional problems in an expensive optimization setting.

On the other hand, the more sophisticated restarting SHADE

variants perform well for medium and expensive settings, and

are competitive with restart CMA-ES variants depending on

the number of evaluations and the dimensionality. However, in

an expensive scenario, SHADE variants are not competitive

with HCMA. These results suggest that integration of a

surrogate-based component into SHADE as an interesting line

of future work which could result in a competitive adaptive

DE algorithm for expensive optimization.
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