
6th GECCO Workshop on
BlackboxOptimization Benchmarking (BBOB):

Turbo Intro to COCO/BBOB

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

GECCO '14, Jul 12-16 2014, Vancouver, BC, Canada

ACM 978-1-4503-2881-4/14/07.

http://dx.doi.org/10.1145/2598394.2605339

The BBOBies
https://github.com/numbbo/coco

slides based on previous ones by A. Auger, N. Hansen, and D. Brockhoff

Optimize ὪȡɱṒᴙ ᵐᴙ

derivatives not available or not useful

ὼɴ ᴙ Ὢὼᶰᴙ

Numerical BlackboxOptimization

Given:

Not clear:

which of the many algorithms should I use on my problem?

ὼɴ ᴙ Ὢὼᶰᴙ

Practical BlackboxOptimization

Åunderstanding of algorithms

Åalgorithm selection

Åputting algorithms to a standardized test
Åsimplify judgement

Åsimplify comparison

Åregression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

Åchoosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

Årunning a set of algorithms

Need: Benchmarking

that's where COCO and BBOB come into play

Comparing Continuous Optimizers Platform

https :// github.com/numbbo/coco

automatizedbenchmarking

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

example_experiment.c

/* Iterate over all problems in the suite */

while ((PROBLEM = coco_suite_get_next_problem (suite, observer)) != NULL)

{

size_t dimension = coco_problem_get_dimension (PROBLEM);

/* Run the algorithm at least once */

for (run = 1; run <= 1 + INDEPENDENT_RESTARTS; run++) {

size_t evaluations_done = coco_problem_get_evaluations (PROBLEM);

long evaluations_remaining =

(long)(dimension * BUDGET_MULTIPLIER) ï (long) evaluations_done ;

if (... || (evaluations_remaining <= 0))

break;

my_random_search (evaluate_function , dimension,

coco_problem_get_number_of_objectives (PROBLEM),

coco_problem_get_smallest_values_of_interest (PROBLEM),

coco_problem_get_largest_values_of_interest (PROBLEM),

(size_t) evaluations_remaining ,

random_generator);

}

https://github.com/numbbo/coco

result folder

automatically generated results

