6th GECCO Workshop on Blackbox Optimization Benchmarking (BBOB): Wrap-Up

The BBOBies
https://github.com/numbbo/coco

Inria
INVENTORS FOR THE DIGITAL WORLD
Numerical Blackbox Optimization

Optimize $f : \Omega \subset \mathbb{R}^n \mapsto \mathbb{R}^k$

$x \in \mathbb{R}^n \rightarrow f(x) \in \mathbb{R}^k$

derivatives not available or not useful
Need: Benchmarking

• understanding of algorithms
• algorithm selection
• putting algorithms to a standardized test
 • simplify judgement
 • simplify comparison
 • regression test under algorithm changes
that's where COCO and BBOB come into play

Comparing Continuous Optimizers Platform

https://github.com/numbbo/coco
Available Data Sets in COCO before and after 2016

- **bbob**
 - Before 2016: 140+ algo data sets
 - In 2016: 4 data sets

- **bbob-noisy**
 - Before 2016: 40+ algo data sets
 - In 2016: 4 data sets

- **bbob-biobj**
 - New in 2016: 15 data sets
extension of COCO to multi-objective optimization
bbob-biobj Testbed (new in 2016)

- 55 functions, combining `bbob` functions
- 6 dimensions (2..40D)
- no normalization
- ideal/nadir known
- but Pareto set/front not (only refsets)
algorithm quality =

\[
\begin{aligned}
\text{normalized* hypervolume (HV)} \\
\text{of all non-dominated solutions}
\end{aligned}
\]

\text{if a point dominates nadir}

\[
\begin{aligned}
\text{closest normalized* negative distance} \\
\text{to region of interest [0,1]^2}
\end{aligned}
\]

\text{if no point dominates nadir}

\[
\begin{aligned}
\text{* such that ideal=[0,0] and nadir=[1,1]}
\end{aligned}
\]
Bi-objective Performance Assessment

Again, as in last session's wrap-up:

• results are relative to a reference set, given as the best Pareto front approximation known (since exact Pareto set not known)
 • note: improved reference sets compared to workshop papers

• actual absolute hypervolume targets used are

 \[\text{HV}(\text{refset}) - \text{targetprecision} \]

 with 51 fixed targetprecisions between 1 and \(10^{-5}\) (same for all functions, dimensions, and instances) in the displays

• all 10 instances are displayed
let's dig into the data...
all results for the bbob-biobj suites
Bi-objective Performance Assessment

The ECDFs are actually influenced by

1. the number and set of instances and by
2. the reference set and the reference hypervolume values

...so let's have a brief look behind the scenes of BBOB
the influence of the instances
BBOB-2016: Instances

• on the bbobbbobj test suite, experiments were run on 10 instances

• but all plots were based on the first 5 instances only
 • practical reason 1: we did not have enough data to produce good hypervolume reference values for all instances
 • practical reason 2: setting allows to investigate potential overfitting ("split between training and test")
BBOB-2016: Instances 1-5 (2-D)
BBOB-2016: Instances 1-10 (2-D)
BBOB-2016: Instances 1-10 (same data)
now 20-D
Influence of the Instance Set

• is relatively small
• sometimes, last 5 instances harder, sometimes first 5 (depending on dimension)
• no indication of overfitting to the first 5 instances
2 the influence of the reference set
BBOB-2016: Reference Set Before
BBOB-2016: Reference Set BBOB-2016

Proportion of function + target

\log_{10} \text{of (}\# \text{f-evals / dimension})
quick check: first 5 instances
BBOB-2016: Reference Set After

- bbob-biobj - f1-f55, 5-D, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 instances

- best 2016 (after)
 - HMO-CMA-ES
 - UP-MO-CMA-ES
 - RM-MEDA
 - DEMO
 - GA-MULTIOBJ(NSG)
 - SMS-EMOA-DE
 - SMS-EMOA-PM
 - RS-5
 - MO-DIRECT-hv(HV-)
 - RS-4
 - MO-DIRECT-hv(Rar)
 - MO-DIRECT-hv(ND)

- log10 of (# f-evals / dimension)
Influence of the Reference Set

- impact by the workshop algorithms the largest
- mainly on second five instances
 - which means the provided and displayed reference sets were okay
- continue with the current best in the future
 - updated reference hypervolume values will be provided in one of the next releases (this summer for sure)
- investigations on the single functions show that for some, we still do not have a good enough reference set yet
The Future of COCO

- bi-objective data will be made available online in the next days
- towards more realistic problems
 - large-scale test suite soon ready for release
 - constraints potentially ready in 2017
 - "almost real-world" problems
- online visualization of data
Your Participation is Welcome...

• ...always 😊

• benchmark your own algorithm and submit next year

• report bugs, issues, and feature requests
 • https://github.com/numbbo/coco

• contribute to the code base on github
 • issue tracker has special flag easy

• or even join us in Paris
 • as an engineer (funding for 1 year available)
 • or as postdoc, PhD student, or intern