Benchmarking Projection-Based Real Coded Genetic Algorithm on BBOB-2013 Noiseless Function Testbed

Babatunde Sawyerr1 Aderemi Adewumi2 Montaz Ali3

1University of Lagos, Lagos, Nigeria
2University of KwaZulu-Natal, Durban, South Africa
3University of The Witwatersrand, Johannesburg, South Africa

Workshop on Black Box Optimization Benchmarking, 2013
1. Introduction
 - Problem Statement
 - Genetic Algorithms

2. Projection-based Real Coded Genetic Algorithm
 - Projection
 - The PRCGA Algorithm

3. Experimental Procedure
 - Experimental Settings

4. Experimental Results
 - Empirical Results
 - Discussion

5. Thank you
Introduction

Problem Statement

Genetic Algorithms

Projection-based Real Coded Genetic Algorithm

Projection

The PRCGA Algorithm

Experimental Procedure

Experimental Settings

Experimental Results

Empirical Results

Discussion

Conclusion

Thank you

Sawyerr, Adewumi & Ali

Benchmarking PRCGA on BBOB-2013 Noiseless Testbed
The Global Optimization Problem
Real Parameter Optimization

- The task is to minimize an objective function f. Given $f : S \rightarrow \mathbb{R}$ where $S \subset \mathbb{R}^n$, find $x^* \in S$ for which,

$$f(x^*) \leq f(x), \quad \forall x \in S.$$ \hfill (1)

- Black Box approach:
 - gradients are not known or not useful.
 - problem domain are rugged and ill-conditioned.

- Goal:
 - To find the global optimum, x^* quickly.
 - With the least search cost (function evaluations).
Genetic Algorithms

- Developed by John Holland in 1975.
- Goal: Develop robust and adaptive systems.
- Solutions are represented internally as genetic encoding of points.
- Reproduction of offspring via:
 - mutation,
 - recombination.
- Selection methods: initially Fitness-proportional method.
- Model: Generational or Steady state.
Real Coded Genetic Algorithms

- Real valued representation are used as genetic encodings of points.
- They are better adapted to numerical optimization of continuous problems.
- They can also be easily hybridized with other search methods.
Introduction

Problem Statement

Genetic Algorithms

Projection-based Real Coded Genetic Algorithm

Projection

The PRCGA Algorithm

Experimental Procedure

Experimental Settings

Experimental Results

Empirical Results

Discussion

Thank you

Sawyerr, Adewumi & Ali

Benchmarking PRCGA on BBOB-2013 Noiseless Testbed
Orthogonal Projection of a vector x on a vector y

For any two n dimensional vectors, the projection of a vector x on another vector y generates a vector, defined by:

$$
\hat{y} = \frac{x^Ty}{y^Ty}y = \frac{x^Ty}{\|y\|^2}y = \left(\frac{\|x\|\cos(\theta)}{\|y\|}y\right).
$$

(2)

Note that the projected vector \hat{y} (the offspring) will be in the same direction as y unless $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$ in which case the angle, θ, between the two vectors is such that $\cos(\theta) < 0$. As a result, the projected vector is in the opposite direction (the reflection of y about the origin).
Orthogonal Projection of a vector x on a vector y

Figure: Projection of vector x on vector y
Outline

1. Introduction
 - Problem Statement
 - Genetic Algorithms

2. Projection-based Real Coded Genetic Algorithm
 - Projection
 - The PRCGA Algorithm

3. Experimental Procedure
 - Experimental Settings

4. Experimental Results
 - Empirical Results
 - Discussion

5. Thank you
The PRCGA Algorithm

PRCGA was first introduced as RCGA-P in [6, 7].
- The incorporated projection operator showed promising exploratory search capability in some search problems.
- PRCGA is an enhanced version of RCGA-P.

Inputs
- Fitness function f.
- Parameters.

Outputs
- The Best solution x_{best}.
- Fitness value of x_{best}, $f(x_{best})$.
The PRCGA Algorithm

1. Initialize $P_{t=0}$, $P_t = \{x_{1,t}, x_{2,t}, \ldots, x_{N,t}\}$ from S
2. $f(x_{i,t}) = \text{evaluate}(P_t), \{1 \leq i \leq N\}$
3. While not stopping condition, do steps 4 - 12
4. $\zeta_t = \sigma(f(P_t))$, if $\zeta_t \leq \epsilon$ do step 5 else step 6
5. $\hat{P}_t = \text{perturb}(P_t)$
6. $\hat{P}_t = \text{tournamentSelection}(P_t)$
7. $C_t = \text{blend-}\alpha\text{Crossover}(\hat{P}_t, p_c)$
8. $M_t = \text{non-uniformMutation}(C_t, p_m)$
9. $\Phi_t = \text{projection}(M_t)$
10. $f(x_{i,t}) = \text{evaluate}(\Phi_t)$
11. $P_{t+1} = \text{replace}(P_t, \Phi_t)$
12. $t = t + 1$
13. end while
Outline

1. Introduction
 - Problem Statement
 - Genetic Algorithms

2. Projection-based Real Coded Genetic Algorithm
 - Projection
 - The PRCGA Algorithm

3. Experimental Procedure
 - Experimental Settings

4. Experimental Results
 - Empirical Results
 - Discussion

5. Thank you
Computer System and Software

Computer System Configuration
- HP Probook 6545b with AMD Turion(tm) II Ultra Dual-Core mobile M620 CPU processor.
- CPU Speed: 2.5GHz.
- RAM: 2.75GB

Software
- Microsoft Windows 7 Professional service pack 1.
- MATLAB 7.10 (R2010a).
- COmparing Continuous Optimisers (COCO) software.
- Post-Processing Script in Python
The experimental setup was carried out according to [3] on the benchmark functions provided in [2, 4].

Two independent restart strategies were employed

- Checks for stagnation [1].
- Maximum number of generations reached without f_{target}.

For each restart strategy, the genetic run is initiated with an initial population P_0 which is $\sim \text{Unif}([-4, 4]^D)$.
Parameter Settings

Parameters

- Population Size = \(\min(100, 100 \times D) \), where \(D \) = dimension.
- Maximum Number of Evaluation = \(10^5 \times D \).
- Tournament size = 3.
- Crossover rate \(p_c = 0.8 \).
- Mutation rate \(p_m = 0.15 \).
- Non-uniformity factor for Mutation \(\beta = 15 \).
- Crafting effort \(CrE = 0 \).
The CPU timing experiment was conducted using the same independent restart strategies on the function f_8 for a duration of 30 seconds.

| Dimension | 2 | 3 | 5 | 10 | 20 | 40 |
|-----------|----|----|----|----|----|--|---|
| Time ($\times 10^{-5}$) | 7.1 | 7.5 | 6.9 | 6.9 | 7.1 | 8.0 |
Outline

1. Introduction
 - Problem Statement
 - Genetic Algorithms

2. Projection-based Real Coded Genetic Algorithm
 - Projection
 - The PRCGA Algorithm

3. Experimental Procedure
 - Experimental Settings

4. Experimental Results
 - Empirical Results
 - Discussion

5. Thank you
Ellipsoid separable

Benchmarking PRCGA on BBOB-2013 Noiseless Testbed
Rastrigin separable

Benchmarking PRCGA on BBOB-2013 Noiseless Testbed
Skew Rastrigin-Bueche separable

Benchmarking PRCGA on BBOB-2013 Noiseless Testbed
Outline

1. Introduction
 - Problem Statement
 - Genetic Algorithms

2. Projection-based Real Coded Genetic Algorithm
 - Projection
 - The PRCGA Algorithm

3. Experimental Procedure
 - Experimental Settings

4. Experimental Results
 - Empirical Results
 - Discussion

5. Thank you
Separable Functions

- PRCGA performed well on separable functions $f_1 - f_4$.
- PRCGA also solved Gallagher’s Gaussian 101-me Peaks Function f_{21}, a multi-modal function with weak global structure.
- PRCGA showed some encouraging performance in solving problems $f_6 - f_7$ in dimensions 2 – 10.

Functions with high conditioning and unimodal

- Functions $f_{10} - f_{14}$ prove to be difficult for PRCGA to solve to the required level of accuracy.
Comparison of PRCGA with Previous GAs

- DBRCGA [1] outperformed PRCGA.
- PRCGA performed better than the RCGA in [8].
- PRCGA performed better than the simpleGA in [5].
The benchmarking of PRCGA on noiseless BBOB function testbed shows the strengths and weaknesses of the algorithm.

The performance of PRCGA shows that in its current form it cannot compete with state-of-the-art evolutionary algorithms.
Thank You!!!
For Further Reading

N. Hansen, A. Auger, S. Finck, and R. Ros.
Real-parameter black-box optimization benchmarking
2012: Experimental setup.

N. Hansen, S. Finck, R. Ros, and A. Auger.
Real-parameter black-box optimization benchmarking
2009: Noiseless functions definitions.
Updated February 2010.
M. Nicolau.
Application of a simple binary genetic algorithm to a noiseless testbed benchmark.
In GECCO (Companion), pages 2473–2478, 2009.

B. A. Sawyerr.
Hybrid real coded genetic algorithms with pattern search and projection.