Comparison of Ordinal and Metric Gaussian Process Regression as Surrogate Models for CMA Evolution Strategy

Zbyněk Pitra1,2,3, Lukáš Bajer1,4, Jakub Repický1,4, Martin Holeňa1

1Institute of Computer Science, Czech Academy of Sciences
2Faculty of Nuclear Sciences and Physical Engineering
3National Institute of Mental Health
4Faculty of Mathematics and Physics, Charles University

Prague, Czech Republic

GECCO 2017
Contents

1 DTS-CMA-ES

2 Surrogate models
 • Metric Gaussian Processes
 • Ordinal Gaussian Processes

3 Experimental results

Z Pitra, L Bajer, J Repický, M Holeňa
Comparison Ordinal vs. Metric GP for CMA-ES
DTS-CMA-ES

Initialize: standard CMA-ES initialization with population doubled

\textbf{while} not terminate

1. CMA-ES sampling of population $x_i \sim \mathcal{N}(m, \sigma^2 C)$, for $i = 1, \ldots, \lambda$
DTS-CMA-ES

Initialize: standard CMA-ES initialization with population doubled

while not terminate

1. CMA-ES sampling of population $x_i \sim \mathcal{N}(\mathbf{m}, \sigma^2 C)$, for $i = 1, \ldots, \lambda$
2. train the first model f_{M1} on the so-far original-evaluated points
DTS-CMA-ES

Initialize: standard CMA-ES initialization with population doubled

while not terminate

1. CMA-ES sampling of population $\mathbf{x}_i \sim \mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{C})$, for $i = 1, \ldots, \lambda$
2. train the first model f_{M_1} on the so-far original-evaluated points
3. get mean $\hat{\mu}_i$ and variance \hat{s}_i^2 of all \mathbf{x}_i with the model f_{M_1}
4. select the most promising $\lceil \alpha \lambda \rceil$ points accord. to the model f_{M_1}
5. evaluate the chosen points with the original fitness f
6. re-train the second model f_{M_2} with these new points
7. predict the fitness for the non-original-evaluated points with f_{M_2}
8. CMA-ES update of \mathbf{m}, σ, \mathbf{C}
DTS-CMA-ES

Initialize: standard CMA-ES initialization with population doubled

while not terminate

1. CMA-ES sampling of population $\mathbf{x}_i \sim \mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{C})$, for $i = 1, \ldots, \lambda$
2. train the first model f_{M_1} on the so-far original-evaluated points
3. get mean $\hat{\mu}_i$ and variance \hat{s}_i^2 of all \mathbf{x}_i with the model f_{M_1}
4. select the most promising $\lceil \alpha \lambda \rceil$ points accord. to the model f_{M_1}

![Criterion ranking according to 1st model](image)
DTS-CMA-ES

Initialize: standard CMA-ES initialization with population doubled

while not terminate

1. CMA-ES sampling of population \(x_i \sim \mathcal{N}(m, \sigma^2 C) \), for \(i = 1, \ldots, \lambda \)
2. train the first model \(f_{M1} \) on the so-far original-evaluated points
3. get mean \(\hat{\mu}_i \) and variance \(\hat{s}_i^2 \) of all \(x_i \) with the model \(f_{M1} \)
4. select the most promising \(\lceil \alpha \lambda \rceil \) points accord. to the model \(f_{M1} \)
5. evaluate the chosen points with the original fitness \(f \)

Z Pitra, L Bajer, J Repický, M Holeňa

Comparison Ordinal vs. Metric GP for CMA-ES	3
DTS-CMA-ES

Initialize: standard CMA-ES initialization with population doubled

while not terminate

1. CMA-ES sampling of population $x_i \sim \mathcal{N}(m, \sigma^2 C)$, for $i = 1, \ldots, \lambda$
2. train the first model f_{M1} on the so-far original-evaluated points
3. get mean $\hat{\mu}_i$ and variance \hat{s}_i^2 of all x_i with the model f_{M1}
4. select the most promising $\lceil \alpha \lambda \rceil$ points accord. to the model f_{M1}
5. evaluate the chosen points with the original fitness f
6. re-train the second model f_{M2} with these new points
DTS-CMA-ES

Initialize: standard CMA-ES initialization with population doubled

while not terminate

1. CMA-ES sampling of population $\mathbf{x}_i \sim \mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{C})$, for $i = 1, \ldots, \lambda$

2. **train the first model** $f_{\mathcal{M}_1}$ on the so-far original-evaluated points

3. get mean $\hat{\mu}_i$ and variance \hat{s}_i^2 of all \mathbf{x}_i with the **model** $f_{\mathcal{M}_1}$

4. select the most promising $\lceil \alpha \lambda \rceil$ points accord. to the **model** $f_{\mathcal{M}_1}$

5. evaluate the chosen points with the original fitness f

6. **re-train the second model** $f_{\mathcal{M}_2}$ with these new points

7. predict the fitness for the non-original-evaluated points with $f_{\mathcal{M}_2}$
DTS-CMA-ES

Initialize: standard CMA-ES initialization with population doubled

while not terminate

1. CMA-ES sampling of population $x_i \sim \mathcal{N}(m, \sigma^2 C)$, for $i = 1, \ldots, \lambda$
2. train the first model f_{M1} on the so-far original-evaluated points
3. get mean $\hat{\mu}_i$ and variance \hat{s}_i^2 of all x_i with the model f_{M1}
4. select the most promising $\lceil\alpha \lambda\rceil$ points accord. to the model f_{M1}
5. evaluate the chosen points with the original fitness f
6. re-train the second model f_{M2} with these new points
7. predict the fitness for the non-original-evaluated points with f_{M2}
8. CMA-ES update of m, σ, C
Gaussian Process

GP is a stochastic process, where any finite collection of random variables has a joint Gaussian distribution

\[f_{GP}(\mathbf{x}) \sim \text{GP}(\mu(\mathbf{x}), k(\mathbf{x}_1, \mathbf{x}_2)) \]

Defined by the mean function \(\mu(\mathbf{x}) \) (usually constant) and covariance function \(k(\mathbf{x}_1, \mathbf{x}_2) \) and their (hyper)parameters.
Gaussian Process

GP is a stochastic process, where any finite collection of random variables has a joint Gaussian distribution

\[f_{\text{GP}}(\mathbf{x}) \sim \text{GP}(\mu(\mathbf{x}), k(\mathbf{x}_1, \mathbf{x}_2)) \]

Defined by the **mean function** \(\mu(\mathbf{x}) \) (usually constant) and **covariance function** \(k(\mathbf{x}_1, \mathbf{x}_2) \) and their (hyper)parameters

GP can express **uncertainty** of the prediction in a new point \(\mathbf{x} \): it gives a **probability distribution** of the output value
Given a set of N training points $X_N = (x_1 \ldots x_N), \ x_i \in \mathbb{R}^d$, and corresponding measured values $y_N = (y_1, \ldots, y_N)^\top$ of a function f being approximated

$$y_i = f(x_i), \quad i = 1, \ldots, N$$
given a set of \(N \) training points \(\mathbf{X}_N = (\mathbf{x}_1 \ldots \mathbf{x}_N), \mathbf{x}_i \in \mathbb{R}^d \), and corresponding measured values \(\mathbf{y}_N = (y_1, \ldots, y_N)^\top \) of a function \(f \) being approximated

\[
y_i = f(\mathbf{x}_i), \quad i = 1, \ldots, N
\]

GP considers vector of these function values as a sample from \(N \)-variate Gaussian distribution

\[
\mathbf{y}_N \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_N)
\]
When considering a new point \((x^*, y^*)\), the prob. density of its \(f\)-values is 1D Gaussian

\[
p(y^* \mid X_N, x^*, y_N) \sim \mathcal{N}(\hat{\mu}_{N+1}, \hat{s}^2_{N+1})
\]
Gaussian Process prediction

When considering a new point \((x^*, y^*)\), the prob. density of its \(f\)-values is 1D Gaussian

\[
p(y^* \mid X_N, x^*, y_N) \sim \mathcal{N}(\hat{\mu}_{N+1}, \hat{s}^2_{N+1})
\]

with the mean and variance given by

\[
\begin{align*}
\hat{\mu}_{N+1} &= k^\top C_N^{-1} y_N, \\
\hat{s}^2_{N+1} &= \kappa - k^\top C_N^{-1} k
\end{align*}
\]

where

- \(C_N\) is GP covariance matrix – matrix of covariance function’s values \(k(x_i, x_j)\) for each pair \(x_i, x_j\)
- \(k\) is vector of covariance function’s values \(k(x^*, x_i)\) between the new point \(x^*\) and \(x_i \in X_N\)
- \(\kappa\) is the variance of the new point itself \(k(x^*, x^*)\)
Ordinal GP = Gaussian process $f_{GP}(x) \sim \text{GP}(\mu(x), k(x_1, x_2))$

- trained on ordinal values $0, 1, \ldots, r$ instead of original f-values (including the following transformation)
- linearly mapped via set of additional parameters $\alpha_0, \alpha, b_1, \ldots, b_{r-1}$ onto the space of ordinal values $0, 1, \ldots, r$ as

$$f_{\text{ORD}}(x) = \alpha_0 - \alpha f_{GP}(x)$$

where $-\infty = b_0 < b_1 < \cdots < b_{r-1} < b_r = \infty$.

Z Pitra, L Bajer, J Repický, M Holeňa

Comparison Ordinal vs. Metric GP for CMA-ES
Ordinal Gaussian Processes

Training

\((x_i, y_i)^N_{i=1} \leftarrow \mathcal{A} \)

\(\mathcal{A} \) – original data archive

\{load data from archive\}
Ordinal Gaussian Processes

Training

1. \((x_i, y_i)^N_{i=1} \leftarrow \mathcal{A} \)
2. \(\{ y_i^{\text{ord}} \}^N_{i=1} \leftarrow \text{cluster}(\{ y_i \}^N_{i=1}, r) \)

\(\mathcal{A} \) – original data archive
\(r \) – number of cluster levels

\(y_1^{\text{ord}} \)
\(y_2^{\text{ord}} \)
\(y_3^{\text{ord}} \)

{load data from archive}
Ordinal Gaussian Processes

Training

1. $\{(x_i, y_i)\}_{i=1}^{N} \leftarrow A$
2. $\{y_{i}^{\text{ord}}\}_{i=1}^{N} \leftarrow \text{cluster}(\{y_i\}_{i=1}^{N}, r)$
3. $(\alpha, \{\beta_j\}_{j=1}^{r-1}, \theta)^* \leftarrow \arg\max_{\alpha, \{\beta_j\}_{j=1}^{r-1}, \theta} \log \hat{L}(\{y_{i}^{\text{ord}}\}_{i=1}^{N} | \{x_i\}_{i=1}^{N}, \alpha, \{\beta_j\}_{j=1}^{r-1}, \theta)$

A – original data archive
r – number of cluster levels
α, α_0 – linear mapping parameters
$\beta_i = \alpha_0 + b_i$
θ – latent GP hyperparameters

\hat{L} – log-likelihood

model trained through likelihood maximization

ordinal GP model

$b_3 = \infty$
b_2
b_1
$b_0 = -\infty$
I_3
I_2
I_1
Ordinal Gaussian Processes

Prediction

\[\{x_i\}_{i=1}^{\lambda} \text{ – population to predict} \]
Ordinal Gaussian Processes

Prediction

\[p_{i,k} \leftarrow P(f(x_i) \in I_k | x_i, \alpha, \{\beta_j\}_{j=1}^{r-1}, \theta) \]

\[\forall k = 1, \ldots, r, \forall i = 1, \ldots, \lambda \]

\{x_i\}_{i=1}^\lambda \text{ – population to predict} \\
\(r \) \text{ – number of cluster levels} \\
\(\alpha, \alpha_0 \) \text{ – linear mapping parameters} \\
\(\beta_i = \alpha_0 + b_i \) \\
\(\theta \) \text{ – latent GP hyperparameters}
Ordinal Gaussian Processes

Prediction

1. \(p_{i,k} \leftarrow P(f(x_i) \in I_k | x_i, \alpha, \{\beta_j\}_{j=1}^{r-1}, \theta) \)
2. \(q_i \leftarrow \sum_{k=1}^{r} p_{i,k} \)

\(\{x_i\}_{i=1}^{\lambda} \) – population to predict
\(r \) – number of cluster levels
\(\alpha, \alpha_0 \) – linear mapping parameters
\(\beta_i = \alpha_0 + b_i \)
\(\theta \) – latent GP hyperparameters

Mapping a new population to intervals using probability
Weighted prediction
Ordinal Gaussian Processes

Prediction

1. \(p_{i,k} \leftarrow P(f(\mathbf{x}_i) \in I_k | \mathbf{x}_i, \alpha, \{\beta_j\}_{j=1}^{r-1}, \theta) \) \quad \forall k = 1, \ldots, r, \forall i = 1, \ldots, \lambda

2. \(q_i \leftarrow \sum_{k=1}^{r} p_{i,k} \)

3. \(\{\mathbf{x}_{i:\lambda}\}_{i=1}^{\lambda} \leftarrow \text{order } \{\mathbf{x}_i\}_{i=1}^{\lambda} \text{ according to } q_1:1 \leq q_2:1 \leq \cdots \leq q_{\lambda}:1 \)

\(\{\mathbf{x}_i\}_{i=1}^{\lambda} \) – population to predict
\(r \) – number of cluster levels
\(\alpha, \alpha_0 \) – linear mapping parameters
\(\beta_i = \alpha_0 + b_i \)
\(\theta \) – latent GP hyperparameters
Experimental settings

- Noiseless part of the BBOB
- 100 FE/D budget
- Algorithms
 - CMA-ES
 - DTS-CMA-ES
 - Ord-N-DTS – no clustering
 - Ord-Q-DTS – quantile-based clustering
 - Ord-H-DTS – agglomerative hierarchical clustering
Experimental settings

- Noiseless part of the BBOB
- 100 FE/D budget
- Algorithms
 - CMA-ES
 - DTS-CMA-ES
 - Ord-N-DTS – no clustering
 - Ord-Q-DTS – quantile-based clustering
 - Ord-H-DTS – agglomerative hierarchical clustering
- Ordinal settings
 - λ ordinal levels
 - Matérn GP kernel
Experimental results on BBOB (2 D)

- bbob - f1-f24, 2-D
- 31 target RLs/dim: 0.5..50
- from refalgs/best2009-bbob.tar.gz
- 15 instances

Comparison Ordinal vs. Metric GP for CMA-ES
Experimental results on BBOB (5 D)

Proportion of function+target pairs

log10 of (# f-evals / dimension)

bbob - f1-f24, 5-D
31 target RLs/dim: 0.5..50
from refalgs/best2009-bbob.tar.gz
15 instances

Ord-N-DTS
Ord-H-DTS
Ord-Q-DTS
DTS-CMA-E
CMA-ES

best 2009

Comparison Ordinal vs. Metric GP for CMA-ES
Experimental results on BBOB (10 D)

- bobb - f1-f24, 10-D
- 31 target RLs/dim: 0.5..50
- from refalgs/best2009-bbob.tar.gz
- 15 instances

- Ord-H-DTS
- Ord-N-DTS
- Ord-Q-DTS
- DTS-CMA-E
- best 2009

- CMA-ES

Comparison Ordinal vs. Metric GP for CMA-ES
ECDF results on the whole BBOB (5 D)

Separable
- bobb - f1-f5, 5-D
- 31 target RLs/dim: 0.5..50
- from refalgs/best2009-bbbo.tar.gz
- 15 instances

Moderate
- bobb - f6-f9, 5-D
- 31 target RLs/dim: 0.5..50
- from refalgs/best2009-bbbo.tar.gz
- 15 instances

Ill-conditional
- bobb - f10-f14, 5-D
- 31 target RLs/dim: 0.5..50
- from refalgs/best2009-bbbo.tar.gz
- 15 instances

Multi-modal
- bobb - f15-f19, 5-D
- 31 target RLs/dim: 0.5..50
- from refalgs/best2009-bbbo.tar.gz
- 15 instances

Weakly structured multi-modal
- bobb - f20-f24, 5-D
- 31 target RLs/dim: 0.5..50
- from refalgs/best2009-bbbo.tar.gz
- 15 instances
Results on f6 and f22

2 3 5 10 20 40
0
1
2
3
6 Attractive sector

15 instances
target RL/dim: 10

Ord-N-DTS
Ord-H-DTS
Ord-Q-DTS
DTS-CMA-ES
CMA-ES

2 3 5 10 20 40
0
1
2
3
22 Gallagher 21 peaks

15 instances
target RL/dim: 10

Ord-N-DTS
Ord-H-DTS
Ord-Q-DTS
DTS-CMA-ES
CMA-ES

Z Pitra, L Bajer, J Repický, M Holeňa

Comparison Ordinal vs. Metric GP for CMA-ES
Conclusions

- Effect of different clustering methods not crucial
- Performance of the ordinal GP models is considerably lower than the standard GP models with few exceptions (e.g., attractive sector f_6)
- Further investigation:
 - Adaptive switch between metric and ordinal models
Thank you!

z.pitra@gmail.com
bajeluk@gmail.com
j.repicky@gmail.com
martin@cs.cas.cz